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Problem Background

Application needs tuned for optimal performance

Performance tuning is challenging

Heterogeneous processors
Con�guration diversity

Auto-tuning needed

Performance Portability

Approach: Implementation selection for a multi-variant

component
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Component Interface and Implementations

Implementation variant
Platforms (CPU, accelerator
cores)

Algorithms

Tunable parameter settings

Compiler transformations

...

Meta-data
Dependencies

Resource requirements

Deployment descriptors

Performance prediction models

...
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Staged Composition
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Guiding Composition: Empirical Models

Analytical model

Empirical model

No or little understanding of the target architecture
O�-line Empirical Models: Feed sampling data (training
examples) into a prediction model, e.g. SVM, C4.5
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O�-line Empirical Models: Pros and Cons

+ Avoid �cold start�

+ Controllable tuning process

- Tuning overhead

�Cold start� E�ect

Example from Dastgeer et al. (ParCo'2011) on SkePU/StarPU integration,

Coulombic potential grid execution, with 3 successive executions
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Zoom into the Cons

A closer look at o�-line overhead

Exhaustive execution is not feasible
Previous work: Stargazer (random sampling)

Training examples (Sampling data) is vital for performance

prediction models
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Attack the Cons: Observations

In the context of performance tuning: a concrete example

(Matrix-matrix multiplication)

Smart sampling by heuristics
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Adaptive Sampling

Sample only vertices of a space

Recursive decomposition (cutting) for open spaces, controlled

by maximum depth, etc
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Formalization: Runtime context (e.g. Input Size)

Context Property Value Space (PVS) is a n-dimensional
�nite space

A run-time context instance consists of n context property
values maps to a point in the PVS
PVS has 2n vertices (corner points)

Closed and open subspaces

Closed subspace: a subspace where a variant wins on all
vertices. It heuristically approximate �uninteresting� subspaces
Open subspace: otherwise

Recursive space decomposition
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Convexity Assumption from the Observation

�In real life, the world is smoothly changing, instances close by

most of the time have the same labels, and we need not worry

about all possible labelings.�

Ethem Alpaydin in �Introduction to Machine Learning, second edition�

Our Convexity Assumption

If all vertices of a subspace share the same winner, then the
winner wins in all points of the subspace statistically
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Adaptive Sampling In the Big Picture

O�-line: adaptive sampling, tree construction

On-line (Run-time)

Load the tree
Prediction

Closed space: look up winner on one vertex
Open space: Euclidean-based predictor
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Techniques for Adaptive Sampling

Light oversampling

Sample one extra point in the middle

Detect holes

Small increase in overhead

May increase prediction accuracy
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Further Techniques Based on Adaptive Sampling

Thresholding

Relative threshold: abs(vi − vmin)/vmin <= θ
Stop splitting early

Reduce training overhead

May decrease prediction accuracy
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Further Techniques Based on Adaptive Sampling

Implementation Pruning

Only winners of the vertices will involve in the future sampling

of the subspace

Reduce overhead remarkably if many implementation variants

are available for an interface

May lead to loss of optimization potential
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Further Techniques Based on Adaptive Sampling

Implementation Pruning

Only winners of the vertices will involve in the future sampling

of the subspace

Reduce overhead remarkably if many implementation variants

are available for an interface

May lead to loss of optimization potential

Try 2 winner variants
for each untested vertex
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Platform

Name CPU GPU OS Compiler
Cora 16 Intel(R) Xeon(R)

CPU X5550 @
2.67GHz

3 GPUs: two nVidia
Tesla C2050 and
one Tesla C1060

RHEL
5.6

gcc 4.1.2
and nvcc
V0.2.1221

Fermi 8 Intel(R) Xeon(R)
CPU E5520 @
2.27GHz

two Tesla M2050
GPUs

3.2.1-
2-
ARCH

gcc 4.6.2
and nvcc
V0.2.1221
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Benchmarks

Benchmark Feature modeling Range Implementation variants
Matrix-
matrix
multipli-
cation
(MM)

row size, column
size of �rst ma-
trix, column size
of second matrix

(30, 30, 30) to
(300, 300, 300)

Sequential implementation and
a variant by loop rearrange-
ment, CUDA impl., BLAS impl.,
Pthread impl. and �ve of its vari-
ants from loop rearrangement

Sorting
(ST)

array size; discre-
tization of array
values distribu-
tion (sampled
number of inver-
sions)

(1,0) to
(10k,10)

bubble sort, insertion sort,
merge sort, quick sort

Path �nder
(PF)

row; column (1,1) to
(10k,20k)

OpenMP implementation,
CUDA implementation

Backpropagation
(BP)

array size (1k) to (100k) OpenMP implementation,
CUDA implementation
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Prediction Accuracy (%) on Cora: Base-line adaptive o�-line sampling
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Prediction Accuracy (%) on Fermi: Base-line adaptive o�-line sampling
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Other Metrics

Absolute runtime overhead: 4 - 23 µs

Relative runtime overhead: 0.2%

Average sampling rate: 0.053%
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Test against Convexity Assumption

BP MM

PF ST

Accuracy(%) on closed space. Pecentage(%) on closed space. 22 / 40
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Test against Convexity Assumption
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Thresholding E�ect: Training Time

BP: Depth 4 MM: Depth 4

PF: Depth 1 ST: Depth 4 25 / 40



Thresholding E�ect: Prediction Accuracy
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Thresholding E�ect: Prediction Accuracy
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Oversampling E�ect: Prediction Accuracy

BP MM

PF ST

Adaptive Sampling. Adaptive Sampling with light oversampling.
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Oversampling E�ect: Training Time

BP MM

PF ST

Adaptive Sampling. Adaptive Sampling with light oversampling.
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Implementation Pruning E�ect: Training Time

BP MM

PF ST

Adaptive Sampling. Adaptive Sampling with impl pruning.
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Implementation Pruning E�ect: Prediction Accuracy

BP MM

PF ST

Adaptive Sampling. Adaptive Sampling with impl pruning.
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Combo E�ect: Training Time

BP MM

PF ST
Adaptive Sampling. Adaptive Sampling with the combo of oversampling

and impl pruning.
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Adaptive Sampling vs Random Sampling

BP MM

PF ST
Random Sampling Adaptive Sampling Adaptive Sampling with the combo

of oversampling and impl pruning.
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BP MM

PF ST
Random Sampling Adaptive Sampling Adaptive Sampling with the combo

of oversampling and impl pruning.
38 / 40



Adaptive Sampling vs Random Sampling

MM
Random Sampling Adaptive Sampling Adaptive Sampling with the combo

of oversampling and impl pruning.
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Conclusion

Convexity Assumption holds for all benchmarks used, more to

test

Three techniques help to decrease training time or increase
prediction accuracy

Thresholding
Light Oversampling
Implementation pruning

The right combination can combine the advantages

Adaptive sampling shows bene�ts against random sampling

More questions please contact me: lu.li@liu.se, +46704759692
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